Edge-splittings preserving local edge-connectivity of graphs
نویسنده
چکیده
Let G = (V + s, E) be a 2-edge-connected graph with a designated vertex s. A pair of edges rs, st is called admissible if splitting off these edges (replacing rs and st by rt) preserves the local edge-connectivity (the maximum number of pairwise edge disjoint paths) between each pair of vertices in V. The operation splitting off is very useful in graph theory, it is especially powerful in the solution of edge-connectivity augmentation problems as it was shown by Frank [4]. Mader [7] proved that if d(s) 6= 3 then there exists an admissible pair incident to s. We generalize this result by showing that if d(s) ≥ 4 then there exists an edge incident to s that belongs to at least ⌊d(s)/3⌋ admissible pairs. An infinite family of graphs shows that this bound is best possible. We also refine a result of Frank [5] by describing the structure of the graph if an edge incident to s belongs to no admissible pairs. This provides a new proof for Mader’s theorem.
منابع مشابه
Detachments Preserving Local Edge-Connectivity of Graphs
Let G = (V + s,E) be a graph and let S = (d1, ..., dp) be a set of positive integers with ∑ dj = d(s). An S-detachment splits s into a set of p independent vertices s1, ..., sp with d(sj) = dj , 1 ≤ j ≤ p. Given a requirement function r(u, v) on pairs of vertices of V , an S-detachment is called r-admissible if the detached graph G satisfies λG′(x, y) ≥ r(x, y) for every pair x, y ∈ V . Here λH...
متن کاملSufficient conditions for maximally edge-connected and super-edge-connected
Let $G$ be a connected graph with minimum degree $delta$ and edge-connectivity $lambda$. A graph ismaximally edge-connected if $lambda=delta$, and it is super-edge-connected if every minimum edge-cut istrivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree.In this paper, we show that a connected graph or a connected triangle-free graph is maximall...
متن کاملOn the edge-connectivity of C_4-free graphs
Let $G$ be a connected graph of order $n$ and minimum degree $delta(G)$.The edge-connectivity $lambda(G)$ of $G$ is the minimum numberof edges whose removal renders $G$ disconnected. It is well-known that$lambda(G) leq delta(G)$,and if $lambda(G)=delta(G)$, then$G$ is said to be maximally edge-connected. A classical resultby Chartrand gives the sufficient condition $delta(G) geq frac{n-1}{2}$fo...
متن کاملEdge splitting and connectivity augmentation in directed hypergraphs
We prove theorems on edge splittings and edge-connectivity augmentation in directed hypergraphs, extending earlier results of Mader and Frank, respectively, on directed graphs. MSC Classification: 05C40, 05C65, 05C85, 05C20
متن کاملSufficient conditions on the zeroth-order general Randic index for maximally edge-connected digraphs
Let D be a digraph with vertex set V(D) .For vertex v V(D), the degree of v, denoted by d(v), is defined as the minimum value if its out-degree and its in-degree . Now let D be a digraph with minimum degree and edge-connectivity If is real number, then the zeroth-order general Randic index is defined by . A digraph is maximally edge-connected if . In this paper we present sufficient condi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Applied Mathematics
دوره 156 شماره
صفحات -
تاریخ انتشار 2008